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1-Hydroxypyrazoles have been converted to 1-(benzyloxy), [(9-phenylfluorenyl)oxy], [(N,N-dieth- 
ylcarbamoyl)oxyl, and tsily1oxy)pyrazoles. 14Benzyloxy)pyrazole was lithiated selectively in the 
5-position. Subsequent reaction with electrophiles gives rise to 1-(benzy1oxy)pyrazole with carbon, 
halogen, silicon, sulfur, or t in substituents a t  the 5-position. 1-(Benzy1oxy)pyrazoles could be 
debenzylated by hydrogen bromide or hydrogenolysis producing 5-substituted 1-hydroxypyrazoles 
in high overall yield. 

Introduction 

Electrophiles have been introduced in a regiospecific 
manner into the nucleus of 1-alkyl- and l-phenylpyra- 
zoles by metalation followed by reaction of the generated 
anion with an  electrophile.1-6 See ref 7 for a review. This 
approach has  now been used to introduce a wide variety 
of substituents into the 5-position of 1-hydroxypyrazole 
(1). Such N-hydroxyazoles might be of great interest as  
intermediates in the synthesis of substituted azoles, as  
auxiliaries in mixed anhydride catalyzed condensations?-l0 
and as  possible metabolites in the biological degradation 
of azoles. 

1-Hydroxypyrazole (1) can be prepared by pyrolysis of 
azoxyoxaazatricyclodecadienes,ll by direct oxidation of 
pyrazole with peroxyphthalic acid and base,12 with diben- 
zoyl peroxide and base,13 or with 3-chloroperbenzoic 
acid.14 The oxygen a t  the nucleus is expected to exert a 
stabilizing effect on a n  adjacent carbanion if a lithium 
cation acts as  a link in the coordination. This explains 
why a series of oxygen- and nitrogen-containing substit- 
uents display a n  ortho-directing effect.15 In reported 
examples ortho-directing groups have usually been situ- 
ated a t  ring carbon atoms. However, a protected N- 
hydroxy function has  been used as  a n  ortho-directing 
group in the indole series.16 

In the present study, a series of groups for protection 
of the oxygen atom and directing the metalation of 
1-hydroxypyrazole (1) was examined in order to find a 
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suitable one which can be regioselectively introduced, 
withstand the reaction conditions, and then be removed 
selectively under mild conditions. 

Results and Discussion 

Protection. 1-Hydroxypyrazoles protected at the 
oxygen atom 2a-e were readily prepared in good to 
excellent yield by reacting 1-hydroxypyrazole (1) with 
benzyl bromide, 9-bromo-9-phenylfluorene, NJV-diethyl- 
carbamoyl chloride, tert-butyldimethylsilyl chloride, or 
tert-butyldiphenylsilyl chloride (Scheme 1). The reactions 
were performed in dichloromethane using N-ethyldiiso- 
propylamine. In these reactions competing attack a t  N-2 
to give pyrazole N-oxides was ~0ns ide red . l~  However, 
NMR spectra revealed 0-protected products 2a-e to be 
the single products since the position a t  80 ppm of the 
CHz carbon signal of l a  is characteristic of oxygen- 
substituted carbon atoms. In contrast, the NCHz signal 
of the isomeric 2-benzylpyrazole 1-oxide resonates a t  48 
ppm." Furthermore, C-3 of 2a-e, like other 1-substituted 
pyrazoles, resonates a t  ca. 132 ppm18 while C-3 of 
pyrazole 1-oxides resonates a t  ca. 119 ppm.17 Finally, 
JH.~,H.~ in 2a-e, like in other 1-substituted pyrazoles,lg is 
ca. 2.3 Hz while the corresponding coupling in pyrazole 
N-oxides is ca. 3.9 Hz.17 

The 0-protected 1-hydroxypyrazoles 2a-e were purified 
by flash chromatography. Distillation was avoided as  
other N-alkoxypyrazoles have been reported to explode.20 
The lower yield of the silylated 1-hydroxypyrazoles 2b,c 
may be attributed to  partial hydrolysis during the 
chromatographic separation. 

Lithiation. Lithiation of [(N,N-diethylcarbamoyl)oxy]- 
pyrazole 2d and subsequent quenching with DzO resulted 
in quantitative incorporation of deuterium a t  C-5 in 70% 
yield. The position of the deuterium incorporation was 
proven as  described below. 

Lithiation of 1-(benzy1oxy)pyrazole (2a) with n-BuLi 
in THF with TMEDA as the catalyst a t  -78 "C for 5 min 
followed by addition of DzO afforded the expected 5-deu- 
terio compound 4a (100% deuterium incorporation) in 
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of 1-[(tert-butyldiphenylsilyl)oxylpyrazole (2b) with n- 
BuLi in THF with TMEDA at -78 "C followed by 
addition of trimethylsilyl chloride did not produce the 
desired 5-(trimethylsilyl)-1-[(tert-butyldiphenylsilyl)oxyl- 
pyrazole (Scheme 3). Instead, the isomeric compound 6a 
was isolated in 99% yield. The formation of 6a is most 
likely due to migration of the  tert-butyldiphenylsilyl 
group of the anion 3b from oxygen to C-5. The 0-Si 
bond is stronger than the C-Si bond24 but this difference 
may be overwhelmed by the difference between the 
strength of the 0-Li bond and the C-Li bond making 5 
thermodynamically more stable than  3b. A related N - C migration of silyl groups was observed by lithiation 
of l-(tert-butyldimethylsilyl)pyrazoles.4 

Deprotection. The benzyl group of the 5-substituted 
1-(benzy1oxy)pyrazoles could be removed readily by mild 
hydrogenolysis (10% Pd/C at 0 "C) or by treatment with 
47% aqueous hydrogen bromide as shown for the com- 
pounds 2a, 4d, and 4g which produced the corresponding 
1-hydroxypyrazoles 1,6b, and 6c in almost quantitative 
yield (Scheme 4). 

The experiments above demonstrate that  5-substituted 
14benzyloxy)pyrazoles 4a-i can be prepared in excellent 
yields by lithiation of 1-(benzy1oxy)pyrazole 2a with 
n-BuLi/TMEDA and subsequent reaction with various 
electrophiles. The N-(benzyloxy) group appears to be 
excellent for directed metalation stabilizing the interme- 
diate pyrazol-5-yllithium 3 species. As demonstrated for 
compound 2a, 4d, and 4g the  benzyl protecting group 
can be removed under mild conditions, thus providing 
ready access to 5-substituted 1-hydroxypyrazoles 6. 
Hence, regio- and monoselective introduction of electro- 
philes in the 5-position of 1-hydroxypyrazoles can be 
achieved by rational use of activating groups. 

2a 3a 

El 

a D  
b Me 
c CHO 
d CI 
e Br 

,D e Br 

4a-i 

Electrophile Yield (%) 

D 2 0  97 
Me1 95 
DMF 93 

CBrl 83 
612 87 

C2ClS 79 

f I  12 94 
2d - c N ' 0 c o ~ ~ t r  g SiMe3 Me3SiCI 87 

h SnBu3 Bu3SnCI 90 
4i i SMe Me2S2 95 

97% isolated yield (see Scheme 2). The position of the 
deuteration was proved as described below. I t  is note- 
worthy that  no lithiation a t  the benzyl CH2 group of 
compound 2a was observed under these conditions. This 
is in contrast to the lithiation of 1-benzylpyrazole in the 
presence of TMEDA which under kinetic control takes 
place exclusively a t  the CH2 group.21 The position of the 
deuteration of compounds 4a and 4j was determined 
using 'H and 13C NMR spectroscopy. In the proton 
spectra, the C-5 proton signals at 6.97 ppm of 2a and 
7.39 ppm of 2d disappear. In  the carbon spectra, the C-5 
signal of compound 4a at 122.4 ppm and 124.3 ppm of 4j 
were converted to triplets, characteristic of a deuterio- 
substituted carbon atom. The assignment of the signals 
from C-3 (133.2 ppm) and C-5 (122.4 ppm) in 1-(benzyl- 
0xy)pyrazole (2a) is in agreement with the relative 
position of these signals in 1-alkyl- and 1-aryl-substituted 
pyrazoles.'s The assignment is confirmed by the coupling 
constants since 3Jc.3,~.5 is larger than * J c . ~ , H . ~  and 2Jc. 
s , H . ~  is larger than 3Jc.5,~.3 as observed in 1-alkyl- and 
1-aryl-substituted pyrazoles.18,22 

Reaction with Electrophiles. The utility of the 
lithiation in synthesis of 5-substituted pyrazoles was 
demonstrated by the reaction of the l-(benzyloxy)-5- 
lithiopyrazole (3a) with carbon, halogen, sulfur, silicon, 
and t in electrophiles to give a wide variety of 5-substi- 
tuted 1-(benzy1oxy)pyrazoles 4a-i in good to excellent 
yields. 

When the electrophile was dimethylformamide, quench- 
ing with dilute acid produced the formyl compound 4c. 
While this method has been used extensively to formylate 
 imidazole^,^^ only a n  attempt to formylate [[ 1-(trimeth- 
ylsilyl)ethoxy]methyl]( SEM)-pyrazoles, which proved un- 
successful, has been reported for the pyrazole series.2 

In  lithiation experiments, the tert-butyldiphenylsilyl 
protecting group was found to migrate. Thus, treatment 
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Experimental Section 
General Methods. All reactions involving air-sensitive 

reagents were performed under nitrogen using syringe- 
septum cap techniques. All glassware was flame-dried prior 
to use. Flash ~hromatography~~ was performed using silica 
gel Merck 60 (70-230 mesh). Melting points are uncorrected. 
All new compounds were colorless, unless otherwise stated. 
NMR spectra were recorded on a 200 MHz instrument as 
described in ref 14. 

Materials. All solvents and reagents were obtained from 
Fluka or Aldrich and used without further purification with 
the following exceptions: THF was distilled from Na/ben- 
zophenone ketyl under nitrogen prior to use. CHzC12 and 
TMEDA were distilled from CaHz under nitrogen. n-Butyl- 
lithium was titrated prior to use.z6 Trimethylsilyl chloride 
was freshly distilled from calcium hydride. DMF was distilled 
from phosphorus pentoxide and stored over 3 A molecular 
sieves.27 

Protection. 1-(Benzy1oxy)pyrazole (2a). To a solution 
of 1-hydroxypyrazole (1 )14 (1.68 g, 20 mmol) and N-ethyldiiso- 
propylamine (3.6 mL, 21 mmol) in 20 mL of dry CHzC12 at 0 
"C was added 2.50 mL of benzyl bromide. Stirring was 
continued at rt for 16 h. Removal of CHzC12 and flash 
chromatography (gradient elution: CHzClz-EtzO-heptane 
1:1:20 - 1:1:8) provided 3.43 g (99%) of 1-(benzy1oxy)pyrazole 
(2a) as an oil: Rf(CH2C12-Et20-heptane 1:1:8) 0.23; 'H-NMR 
(CDC13) b 7.40-7.29 (m, 5H), 7.27 (dd, J = 2.3, 1.0 Hz, lH),  
6.97(dd,J=2.3,1.0Hz,lH),6.03(t,J=2.3Hz,lH),5.27(s, 
2H); I3C-NMR (CDC13) b 133.7 (SI, 133.2 (ddd, Jc.3~i.3 = 188.6, 

(24) Colvin, E. Silicon in  Organic Synthesis; Butterworths: London, 
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JC-3,H-4 = 4.6, Jc.3~4.5 = 9.1 Hz, c-31, 129.4 (d), 129.0 (d), 128.4 
(d), 122.4 (ddd, Jc.5~1.5 = 192.7, JC.5,H.4 = 9.1, JC-5,H-3 = 3.8 HZ, 
c-51, 102.9 (ddd, Jc.~,H.~ = 178.4, Jc-~,H-~ a n d J C - 4 , ~ . 3  8.6 and 8.0 
Hz, C-4), 80.2 (t). Anal. Calcd for CIOHIONPO: C, 68.95; H, 
5.79; N, 16.08. Found: C, 68.80; H, 5.80; N, 15.87. 
1-[(tert-Butyldiphenylsilyl)oxylpyrazole (2b). Similar 

reaction with tert-butyldiphenylsilyl chloride (5.40 mL, 21 
mmol) followed by flash chromatography2* (gradient elution: 
CHzClz-Et2O-heptane 1:1:20 - 1:1:15) produced 4.99 g (77%) 
of 1-[(tert-butyldiphenylsilyl)oxy]pyrazole (2b): mp 39 "C 
(pentane); Rf (CH2Cl2-Et2O-heptane 1:1:8) 0.50; 'H-NMR 
(CDC13) 6 7.74-7.69 (m, 4H), 7.50-7.32 (m, 6H), 7.02 (dd, J 
= 2.3, 1.0 Hz, lH), 6.91 (dd, J = 2.3, 1.0 Hz, lH), 5.92 (t, J = 

(d), 130.7 (s), 130.4 (d), 127.7 (d), 121.5 (d), 102.9 (d), 26.5 (q), 
19.2 (9). Anal. Calcd for C19H22N20Si: C, 70.77; H, 6.88; N, 
8.69. Found: C, 70.86; H, 7.00; N, 8.56. 
1-[ (tert-Butyldimethylsilyl)oxylpyrazole (2~). Similar 

reaction with tert-butyldimethylsilyl chloride (3.13 g, 21 mmol), 
followed by flash chr~matography~~ (gradient elution: CH2- 
Cl2-EtzO-pentane 1:1:20 - l:l:lO), gave 2.61 g (66%) 1-[(tert- 
butyldimethylsilyl)oxylpyrazole (2c) as an oil: Ri (CH2C12- 
Et2O-pentane 1:1:15) 0.73; 'H-NMR (CDC13) 6 7.17 (dd, J = 
2.3,1.1Hz,1H),7.16(dd,J=2.4,1.1Hz,1H),6.14(t,J=2.3 

(d), 121.3 (d), 102.9 (d), 25.4 (q), 17.7 (s), -5.34 (9). Anal. Calcd 
for CgHlsN20Si: C, 54.50; H, 9.15; N, 14.12. Found: C, 54.48; 
H, 9.33; N, 14.16. 
1-[ (NJV-Diethylcarbamoyl)oxylpyrazole (2d). Similar 

reaction with NAN-diethylcarbamoyl chloride (2.79 mL, 22 
mmol), followed by flash chromatography (gradient elution: 
CHzCl2-EtzO-heptane 1:1:20 - 1:1:2), afforded 3.55 g (978) 
of 1-[(N~-diethylcarbamoy1)oxylpyrazole (2d) as an oil: Ri 
(CHzCl2-Et2O-heptane 1:1:2) 0.34; 'H-NMR (CDC13) 6 7.39 
(dd, J = 2.5, 1.0 Hz, lH), 7.36 (dd, J = 2.3, 1.0 Hz, lH), 6.30 
(t, J = 2.4 Hz, lH), 3.46 (q, J = 7.2 Hz, 2H), 3.38 (q, J = 7.3 
Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H), 1.21 (t, J = 7.3 Hz, 3H); 

43.2 (t), 41.7 (t), 13.9 (q), 12.8 (9). Anal. Calcd for 
C7H13N302: C, 52.45; H, 7.15; N, 22.94. Found: C, 52.61; H, 
7.19; N, 22.79. 
1-(9-Phenylfluoren-9-yloxy)pyrazole (2e). Using the 

same procedure, but with 9-bromo-9-phenylfluorene (6.51 g, 
20.3 mmol) as the alkylating agent, 4.72 g (73%) of crystalline 
1-(9-phenylfluoren-9-yloxy)pyrazole (2e) was obtained after 
flash chromatography (gradient elution: CHzCl2-EtzO-hep- 
tane 1:1:20 - 1:1:8): mp 114 "C. An analytical sample of 2e 
melting at 118-120 "C was obtained by low temperature 
recrystallization (EtOAcheptane). Residual EtOAc was re- 
moved azeotropically with CH2C12: Rf (CH2C12-EtaO-heptane 
1:1:6) 0.34; 'H-NMR (CDC13) b 7.60-7.22 (m, 13H), 6.88 (dd, 
J = 2.3, 1.0 Hz, lH), 6.58 (dd, J = 2.4, 1.0 Hz, lH), 5.73 (t, J 
= 2.3 Hz, 1H); I3C-NMR (CDC13) 6 144.0, 140.9, 139.3, 131.9, 
129.9, 128.3, 128.1, 127.9, 126.6, 126.0, 124.0, 119.8, 102.3, 
97.0. Anal. Calcd for C~zH16N20: C, 81.46; H, 4.97; N, 8.64. 
Found: C, 81.44; H, 5.09; N, 8.40. 

2.3 Hz, lH), 1.18 (s, 9H); 13C-NMR (CDC13) 6 135.7 (d), 131.4 

Hz, lH), 1.00 (s, 9H), 0.24 (s, 6H); 13C-NMR (CDC13) 6 131.8 

13C-NMR (CDC13) 6 152.8 (s), 133.8 (d), 124.3 (d), 104.2 (d), 

~ ~ ~~ ~~ ~ ~ ~ 

(28) The compound is slightly unstable on silica gel 
(29) Some desilylation takes places during flash chromatography 

5 6a (99%) 

Lithiation of 1-(Benzy1oxy)pyrazole (2a) followed by 
Reaction with an Electrophile. General. To a solution 
of 174 mg (1 mmol) of 1-(benzy1oxy)pyrazole (2a) and 0.17 mL 
of TMEDA in 6 mL of dry THF with stirring at -78 "C was 
added dropwise 0.69 mL (1.1 mmol) of n-BuLi (1.6 M in 
hexane). After 5 min, the electrophile was added. Stirring 
was continued for 1 h, and the solution was allowed to  
warm to rt over 1 h and stirred for a further 1 h before 
workup by distribution of the crude product between CHzCl2 
(10 mL) and saturated NH&l (10 mL), separation of the 
organic layer, extraction of the aqueous phase with CH2C12, 
drying of the organic layer (Na2S04), filtration, and evapora- 
tion of the filtrate in U ~ C U O  at  or below 40 "C in a rotary 
evaporator. 
l-(Benzyloxy)-5-[2Hlpyra~~le (4a). Using the general 

procedure, lithiation was followed by quenching with deute- 
rium oxide (0.10 mL, 5.6 mmol) and worked up to give a crude 
product which by flash chromatography (gradient elution: 
CHzClz-Et20-heptane 1:1:20 - 1:1:8) provided 169 mg (97%) 
of l-(benzyloxy)-5-[2H]pyrazole (4a) as an oil. The 'H NMR 
spectrum was identical with that of the starting material 2a 
except that the signal a t  6.97 ppm was absent, indicating 
quantitative deuteration at the 5-position. 
l-(Benzyloxy)-5-methylpyrazole (4b). Using the general 

method, with methyl iodide (0.30 mL, 4.8 mmol) as the 
electrophile, followed by workup and flash chromatography 
(gradient elution: CHzClz-EtzO-pentane 1:1:20 - 1:1:8) 
provided 179 mg (95%) of l-(benzyloxy)-5-methylpyrazole (4b) 
as an oil. An analytical sample of 4b was obtained by ball 
tube distillation at  0.02 mmHg (oven temperature 40 "C): Rf 
(CHzCl2-EtzO-pentane 1:l:lO) 0.41; 'H-NMR (CDC13) 6 
7.37-7.24 (m, 5H), 7.20 (d, J = 2.2 Hz, lH), 5.82 (dq, 
J = 2.2, 0.7 Hz, lH), 5.25 (s, 2H), 1.85 (d, J = 0.7 Hz); I3C- 
NMR (CDC13) 6 133.7 (s), 132.4 (d), 132.1 (SI, 129.8 (d), 129.1 
(d), 128.4 (d), 102.2 (d), 79.6 (t), 9.1 (9). Anal. Calcd for 
CllH12N20: C, 70.19; H, 6.43; N, 14.88. Found: C, 70.46; H, 
6.57; N, 14.50. 
l-(Benzyloxy)-5-formylpyrazole (44. The general method 

was used with DMF (0.39 mL, 5 mmol) as the electrophile. 
The mixture was then stirred for 16 h with 5 mL of 2 M HC1 
and worked up by separation of the organic layer and extrac- 
tion of the aqueous layer with CH2C12. The combined organic 
phases were dried and evaporated to dryness. Flash chroma- 
tography (gradient elution: CHzCl2-EtzO-pentane 1:1:20 - 
1:1:8) provided 188 mg (93%) of l-(benzyloxy)-5-formylpyrazole 
(4421, mp 43 "C. Recrystallization (EtOAdpentane) gave mp 
44 "C: Rf(CH2C12-Et20-pentane 1:1:6) 0.59; lH-NMR (CDC13) 
6 9.47 (s, lH), 7.40-7.22 (m, 6H), 6.65 (d, J = 2.5 Hz, lH), 

132.4 (s), 129.9 (d), 129.8 (d), 128.7 (d), 106.4 (d), 81.3 (t). Anal. 
Calcd for C11HloN202: C, 65.34; H, 4.98; N, 13.85. Found: C, 
65.5; H, 5.07; N, 13.64. 
l-(Benzyloxy)-5-bromopyrazole (4e). Method a. To a 

solution of 174 mg of 1-(benzy1oxy)pyrazole (2a) and 0.17 mL 
of TMEDA in 6 mL of dry THF with stirring at  -78 "C was 
added dropwise 0.69 mL (1.1 mmol) of n-BuLi (1.6 M in 
hexane). After 5 min, bromine (106 pL, 2 mmol) was added. 
The orange solution was stirred at  -78 "C for 1 h. Addition 
of NaHS03 (1.1 g) dissolved in 5 mL of MeOH-H20 (1:l) 
resulted in a clear solution. Normal workup and flash chro- 
matography (gradient elution: CH2Clz-Et2O-heptane 1:l:lO - 1:1:4) provided 11 mg (3%) l-(benzyloxy)-4,5-dibromopyra- 
zole: mp 53 "C; Rf (CHzCl2-EtzO-heptane 1:1:6) 0.61; 'H- 
NMR (CDC13) 6 7.40 (br s, 5H), 7.36 (s, lH) ,  5.29 (s, 2H); 13C- 

(d), 108.8 (s), 94.4 (s), 81.1 (t). The next fraction contained 
220 mg (87%) of l-(benzyloxy)-5-bromopyrazole (4e) as an oil. 

5.40 (s, 2H); I3C-NMR (CDC13) 6 178.1 (d), 133.8 (SI, 133.2 (d), 

NMR (CDC13) b 134.3 (d), 132.5 (s), 129.9 (d), 129.6 (d), 128.6 
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An analytical sample of 4e was obtained by ball tube distil- 
lation at  0.02 mmHg (oven temperature 60 "C): Rf (CHzClz- 
EtzO-heptane 1:1:6) 0.47; 'H-NMR (CDC13) 6 7.42-7.33 (m, 
5H), 7.29 (d, J = 2.4 Hz, lH), 6.14 (d, J = 2.4 Hz, lH), 5.27 (s, 

(d), 128.4 (d), 106.3 (s), 106.2 (d), 80.7 (t). Anal. Calcd for 
CloHgBrNzO: C, 47.46; H, 3.58; N, 11.07. Found: C, 47.51; 
H, 3.64; N, 11.14. 
Method b. Alternatively, 4e was prepared using the 

general method with tetrabromomethane (0.60 g, 1.8 mmol) 
as the electrophile. Normal workup followed by preparative 
TLC (CHZClz-EtzO-heptane 1:1:3) afforded 210 mg (83%) of 
l-(benzyloxy)-5-bromopyrazole (4e) (Rf = 0.561, identical with 
the material above. The second fraction contained 21 mg (12%) 
of unchanged starting material 2a. 
l-(Benzyloxy)-5-chloropyrazole (4d). The general pro- 

cedure was used with hexachloroethane (0.47 g, 2 mmol) as 
the electrophile. Normal workup and preparative TLC (CHz- 
Clz-EtzO-pentane 1:1:8) afforded 164 mg (79%) of 1-(benzyl- 
oxy)-5-chloropyrazole (4d) as an oil (Rf = 0.591, crystallization 
from pentane gave mp 26 "C. An analytical sample of 4d was 
obtained by ball tube distillation at  0.04 mmHg (oven tem- 
perature 50 "C): 'H-NMR (CDC13) 6 7.38-7.33 (m, 5H), 7.27 

2H); I3C-NMR (CDC13) 6 134.1 (d), 132.8 (SI, 129.8 (d), 129.2 

(d, J = 2.4 Hz, lH), 6.06 (d, J = 2.4 Hz, lH), 5.27 (s, 2H); 13C- 
NMR (CDC13) 6 133.0 (d), 132.8 (s), 129.8 (d), 129.2 (d), 128.4 
(d), 121.0 (s), 102.6 (d), 80.7 (t). Anal. Calcd for C10HgClN20: 
C, 57.57; H, 4.35; N, 13.43. Found: C, 57.76; H, 4.51; N, 13.54. 
The second fraction contained 28 mg (16%) starting material 
2a. 
l-(Benzyloxy)-5-iodopyrazole (40. The general proce- 

dure was used with iodine (0.38 g, 1.5 mmol) as the electro- 
phile. Addition of NazSz03,5 HzO (1 g) dissolved in 10 mL of 
HzO resulted in a clear solution. Normal workup and flash 
chromatography (gradient elution: CHzClz-EtzO-heptane 
1:1:20 - 1:l:lO) provided 281 mg (94%) of l-(benzyloxy)-5- 
iodopyrazole (40 as an oil. An analytical sample of 4f was 
obtained by ball tube distillation at  0.03 mmHg (oven tem- 
perature 80 "C): Rf (CHzClz-Et20-heptane 1:1:6) 0.38; 'H- 
NMR (CDC13) 6 7.48-7.36 (m, 5H), 7.34 (d, J = 2.3 Hz, lH), 

(d), 132.9 (SI, 130.0 (d), 129.3 (d), 128.5 (d), 112.6 (d), 80.9 (t), 
73.4 (s). Anal. Calcd for CloH91Nz0: C, 40.02; H, 3.02; N, 
9.33. Found: C, 40.21; H, 3.09; N, 9.26. 
l-(Benzyloxy)-5-(trimethylsilyl)pyrazole (4g). The gen- 

eral procedure was used with trimethylsilyl chloride (0.26 
mL, 2 mmol) as the electrophile. Addition of saturated 
NaHC03 (5 mL), water (5 mL), and CHzClz (10 mL), separation 
of the organic layer, extraction of the aqueous phase with CHz- 
C12, drying, and removal of solvents followed by flash chro- 
matography (gradient elution: CHzClz-EtzO-pentane 1:1:20 - 1:l:lO) provided 214 mg (87%) of l-(benzyloxy)-5-(trimeth- 
ylsily1)pyrazole (4g) as an oil. An analytical sample of 4g 
was obtained by ball tube distillation a t  0.02 mmHg (oven 
temperature 80 "C): Rf (CHzCln-EtzO-pentane 1:1:8) 0.53; 

6.29 (d, J = 2.3 Hz, lH),  5.28 (s, 2H); I3C-NMR (CDC13) d 135.7 

'H-NMR (CDC13) 6 7.39 (s, 5H), 7.31 (d, J = 2.2 Hz, lH),  
6.20 (d, J = 2.2 Hz, lH), 5.35 (s, 2H), 0.24 (s, 9H); 13C-NMR 
(CDC13) d 134.8 (s), 133.7 (s), 132.9 (d), 129.2 (d), 128.8 (d), 
128.5 (d), 110.6 (d), 79.6 (t), -1.5 (q). Anal. Calcd for 
C13HlBNzOSi: C, 63.37; H, 7.36; N, 11.37. Found: C, 63.57; 
H, 7.46; N, 11.65. 
l-(Benzyloxy)-5-(tributylstannyl)pyrazole (4h). The 

general method was used with tributylstannyl chloride (0.40 
mL, 1.5 mmol) as the electrophile. Normal workup and flash 
chromatography (gradient elution: CHzCls-EtzO-heptane 
1:1:20 - 1:1:8) provided 416 mg of (90%) of l-(benzyloxyI-5- 
(tributylstanny1)pyrazole (4h) as an oil: Rf (CHzC12-Et20- 
heptane 1:1:4) 0.52; 'H-NMR (CDC13) d 7.37 (br s, 6H), 6.14 
(d, J = 2.1 Hz, lH),  5.33 (s, 2H), 1.55 - 0.98 (m, 18H), 0.85 (t, 

(d), 129.1 (d), 128.7 (d), 128.4 (d), 111.2 (d), 79.5 (t), 28.7 (t), 
27.0 (t), 13.5 (t), 10.1 (q). Anal. Calcd for CzzH36NzOSn: C, 
57.04; H, 7.83; N, 6.05. Found: C, 57.23; H, 7.69; N, 6.32. 
l-(Benzyloxy)-5-(methylthio)pyrazole (4i). Using the 

general method with dimethyl disulfide (0.27 mL, 3 mmol) as 
the electrophile gave, after normal workup and flash chroma- 

J = 7.2 Hz, 9H); 13C-NMR (CDC13) 6 133.9 (s), 133.7 (SI ,  133.6 
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tography (CH2Clz-Et20-pentane l:l:lO), 210 mg (95%) of 
l-(benzyloxy)-5-(methylthio)pyrazole (4i) as an oil. An ana- 
lytical sample of 4i was obtained by ball tube distillation at 
0.06 mmHg (oven temperature 110 "C): Rf (CHzClz-EtzO- 
pentane 1:l:lO) 0.45; 'H-NMR (CDC13) 6 7.48-7.32 (m, 5H), 
7.27 (d, J = 2.3 Hz, lH),  6.09 (d, J = 2.3 Hz, lH), 5.29 (s, 2H), 

129.7 (d), 129.0 (d), 128.3 (d), 105.4 (d), 80.3 (t), 17.2(q). Anal. 
Calcd for CllH1zNzOS: C, 59.58; H, 5.49; N, 12.72; S, 14.55. 
Found: C, 60.14; H, 5.67; N, 12.47; S, 14.32. 
Rearrangement of 1-[(tert-Butyldiphenylsilyl)oxyl- 

pyrazole (2b) into l-Hydroxy-5-(tert-butyldiphenylsilyl)- 
pyrazole (6a). To a solution of 1-[(tert-butyldiphenylsily1)- 
oxylpyrazole (2b) (286 mg, 0.89 mmol) and 0.15 mL of TMEDA 
in 6 mL of dry THF at -78 "C was added dropwise 0.67 mL 
(0.97 mmol) of n-BuLi (1.45 M in hexane). After 5 min, 
trimethylsilyl chloride (0.17 mL, 1.34 mmol) was added. 
Stirring was continued for 1 h, and the solution was allowed 
to warm to rt over 1 h and stirred for further 1 h. Addition of 
saturated NH&1 (5 mL), water (5 mL), and Et20 (20 mL), 
separation of the organic layer, extraction of the aqueous phase 
with EtzO, drying, and removal of solvents gave 284 mg (99%) 
of l-hydroxy-5-(tert-butyldiphenylsilyl)pyrazole (6a), mp 156- 
162 "C. Low temperature recrystallization (EtOAcheptane) 
gave mp 169 "C: 'H-NMR (CDC13) 6 7.60-7.55 (m, 4H), 7.46- 
7.31 (m, 6H), 7.01 (d, J = 2.4 Hz, lH),  6.18 (d, J = 2.4 Hz, 

(d), 130.6 ( S I ,  129.5 (d), 127.6 (d), 113.9 (d), 28.3 (q), 18.4 (s). 
Anal. Calcd for C19HzzNzOSi: C, 70.77; H, 6.88; N, 8.69. 
Found: C, 70.64; H, 6.90; N, 8.77. 
Debenzylation of 1-(Benzy1oxy)pyrazoles. 1-Hydroxy- 

5-chloropyrazole (6b). A mixture of l-(benzyloxy)-5-chlo- 
ropyrazole (4d) (425 mg, 2.04 mmol) and 3 mL of aqueous 
hydrogen bromide (47%) was stirred for 5 h at  60 "C. The 
mixture was washed with CHZC12 (5 x 5 mL), and the volume 
of the washings was reduced to ca. 5 mL and back-extracted 
with 47% aqueous HBr (2 x 1 mL). To the combined HBr 
phases were added potassium dihydrogenphosphate (0.5 g) and 
water (5 mL), and the pH was adjusted to ca. 1 with 33% 
aqueous sodium hydroxide. Extraction with CH2Clz-Et20 (4: 
1, 10 x 10 mL), drying of the combined organic phases, and 
removal of solvents afforded 241 mg (100%) of l-hydroxy-5- 
chloropyrazole (6b): mp 143.5 "C; 'H-NMR (CDC13) 6 11.15 
(br s, lH), 7.17 (d, J = 2.7 Hz, lH), 6.17 (d, J = 2.7 Hz, 1H); 
I3C-NMR (CDC13) d 131.4 (d), 122.5 (sj, 103.0 (d). Anal. Calcd 
for C3H3ClN20: C, 30.40; H, 2.55; N, 23.64. Found: C, 30.36; 
H, 2.47; N, 23.44. 
1-Hydroxypyrazole (1). 1-(Benzyloxy jpyrazole (2a) (174 

mg, 1.0 mmol), 34 mg of 10% Pd on activated carbon, and 
MeOH (5 mL) were stirred under hydrogen (1 atm) at 0 "C for 
30 min. Filtration through celite (ca. 0.1 g) and removal of 
the methanol produced 78 mg (93%) of 1-hydroxypyrazole (11, 
identical with the material described previ0us1y.l~ 
l-Hydroxy-5-(trimethylsilyl)pyrazole (6~). Similarly, 

hydrogenolysis of 174 mg (0.71 mmol) of l-(benzyloxy)-5- 
(trimethy1silyl)pyrazole (4g) for 2 h at 0 "C produced 109 mg 
(99%) of l-hydroxy-5-(trimethylsilyl)pyrazole (6~): mp 94 "C 
(EtOAc-heptane); 'H-NMR (CDC13) 6 12.05 (br s, lH),  7.08 
(d, J = 2.4 Hz, lH) ,  6.17 (d, J = 2.4 Hz, lH), 0.33 (s, 9H); 13C- 
NMR (CDC13) d 135.2 (s), 131.0 (d), 109.9 (d), -1.8 (q). Anal. 
Calcd for CsH1zNzOSi: C, 46.12; H, 7.74; N, 17.93. Found: 
C, 46.27; H, 7.74; N, 17.75. 

2.31 (s, 3H); 13C-NMR (CDC13) 6 133.2 (SI, 133.0 (d), 130.0 (s), 

lH),  1.20 (s, 9H); W-NMR (CDC13) d 135.8 (d), 133.0 (s), 131.3 
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